🗹 American Made. 🗹 American Quality. 🗹 Amazing Prices.

			CUTTER DIAMETER (in)							
Material	Specific	Speed	<u>1/8''</u>	<u>3/16</u>	<u>1/4</u>	<u>5/16</u>	<u>3/8</u>	<u>1/2</u>	<u>5/8</u>	<u>3/4</u>
<u>Type</u>	<u>Grades</u>	<u>SFM</u>	CHIPLOAD PER TOOTH (in)							
Low Carbon and Leaded	1005-1029	550	0.0003	0.0006	0.001	0.0013	0.0017	0.002	0.0027	0.0035
Steels <25Rc	12L14	"								
Medium Carbon and	1030-1050	450 "	0.0003	0.0006	0.001	0.0012	0.0015	0.0018	0.0025	0.0032
Alloy Steels 25-35Rc	4130, 4140, 4340	"								
Madium Oarban 0	1040 4400 4440	050	0.0000	0.0004	0.0007	0.0000	0.0010	0.0045	0.000	0.0005
Medium Carbon &	1040, 4130, 4140	250 "	0.0003	0.0004	0.0007	0.0009	0.0012	0.0015	0.002	0.0025
Alloy Steels 36-46Rc	4340, 52100									
Aluminum Alloys	6061, 6066	1200	0.0004	0.0008	0.0012	0.0017	0.0021	0.0025	0.0035	0.0042
AldHilldH Alloys	0001, 0000	1200	0.0004	0.0000	0.0012	0.0017	0.0021	0.0025	0.0000	0.0042
Brass	Free Machining	1000	0.0004	0.0007	0.001	0.0015	0.0018	0.0022	0.003	0.0037
	g									
Titanium and	Commercially Pure	350	0.0003	0.0005	0.0007	0.0009	0.0012	0.0015	0.0021	0.0028
Titanium Alloys	6Al4V	250	0.0003	0.0004	0.0006	0.0008	0.0011	0.0013	0.0018	0.0022
Nickel Alloys	Inconel 718, Waspaloy	80	0.0003	0.0004	0.0005	0.0007	0.0009	0.0012	0.0016	0.0022
	Hastelloy	100	0.0003	0.0004	0.0005	0.0007	0.0009	0.0012	0.0016	0.0022
	Monel 400 series	200	0.0003	0.0006	0.0008	0.0011	0.0013	0.0018	0.0022	0.0028
	Monel 500 series	140	0.0003	0.0004	0.0006	0.0008	0.0011	0.0015	0.002	0.0025
Stainless Steels	300 series	350	0.0003		0.0006	0.0008	0.0011	0.0015	0.002	0.0025
	400 series	400		0.0004	0.0006	0.0008	0.0011	0.0015	0.002	0.0025
	15-5PH, 17-4PH	250		0.0004	0.0006	0.0008	0.0011	0.0015	0.002	0.0025
	Nitronic 32,33,40,50,60	150	0.0003	0.0004	0.0005	0.0007	0.001	0.0014	0.0018	0.0022
Cast Iron	Gray	500	0.0004	0.0006	0.0009	0.0011	0.0014	0.002	0.0028	0.0035
Cast IIUII	Ductile	500 425	0.0004	0.0008	0.0009	0.0011	0.0014	0.0025	0.0028	0.0035
	Malleable	423		0.0007		0.0013	0.0017	0.0023	0.0032	0.0035
		400	0.0004	0.0000	0.0009	0.0011	0.0014	0.002	0.0020	0.0000
Tool Steels	H10, H12, A2	325	0.0003	0.0004	0.0007	0.0009	0.0012	0.0015	0.002	0.0024
	D2	225	0.0003	0.0004		0.0009	0.0012		0.002	0.0024

When cutting an internal thread, the linear feed rate needs to be reduced to compensate for the ratio of the tool's cutting diameter to the major diameter being cut. If you do not compensate, the feedrate that the cutting edge sees will be much greater and tool failure will occur. The threadmilling feedrate is equal to: (major dia - cutter diameter)/major diameter) x linear feed rate

EXAMPLE:

If you are using a .285 dia. cutter to do a 3/8-16 thread and the values in the feed and speed chart above tell you that you should be running at a linear feedrate of 24 Inches per minute then: Your adjusted feedtate for threadmilling an internal thread is:

((Major Dia - Cutter dia)/Major Dia) x linear feedrate or (.375-.285)/.375) x 24 ipm = 5.76 inches/minute If you program the center of the cutter to cut at 5.76 inches/minute, the OD of the cutter will be cutting at a feed of 24 IPM

YOU HAVE NO TIME FOR DOWNTIME

Our experienced tech team can answer your tough application questions, assist with proper tool selection, and help you choose the right machine for your shop.

Call **1-800-234-9985** & press 4 when prompted or email **tech@travers.com**